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Abstract: This study is based on the hypothesis that fractal metrics (DFA, Hurst, 
Lyapunov) signal atmospheric instability.   

Early findings show 

1.​ That the divergence of precipitable water vapour and longwave outgoing 
radiation at the top of the atmosphere appears to be a reliable storm precursor, 
particularly when supported by radiation and atmospheric fractal metrics.  

2.​ That a combination of fractal volatility metrics of solar radiation profile between 
the top of the atmosphere and the ground is a significant input and may 
contribute to early warning, and that fractal volatility of water vapour may also 
contribute to prediction and early warning of large storms (hurricanes, typhoons 
and cyclones).  

3.​ When combined with a newly defined Storm Propensity Index (SPI), fractal 
volatility signals improve early warning accuracy for major storm events. 

Year on year changes show climate transition, and fractal metrics indicate that, 
particularly in the Atlantic, atmospheric drivers may be  approaching global heating 
tipping points. 

Gravity changes (largely due to melting ice) also play a seasonal part in weather 
volatility.  

A large spike in detrended Fluctuation Analysis (DFA), an anomaly observed at the tail 
end of 2024, for which there is no apparent explanation.This occurs in both net solar 
radiation flux profile DFA volatility and precipitable water vapour DFA volatility at the 
same time. It may indicate a chaos tipping point where the entire weather system is 
moving to a new attractor pattern. DFA is a metric of longer term structural memory.  
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Overview 
This study investigates the volatility of Earth’s radiation, gravity, and atmospheric 
variables using fractal analysis to assess their dynamic interrelationships and 
implications for climate instability and storm genesis. Our findings indicate that both 
radiative forcing and mass redistribution (e.g., via melting ice sheets) are contributing to 
cumulative changes in spacetime curvature, which in turn foster fractal bifurcation 
patterns indicative of tipping points in the climate system. The most prominent zones of 
volatility correspond with regions already known for climatic instability, including 
Greenland, West Antarctica, and the eastern seaboard of North America. 

Conceptual Framework 
The study is guided by a systems model (see Figure 1) in which solar electromagnetic 
radiation and water cycle flux interact through radiative forcing and mass redistribution. 
These interactions induce changes in spacetime curvature, generating cascading 
instabilities manifesting as fractal bifurcations in energy and mass flows across the 
Earth system. This framework positions gravity and radiation not as secondary effects, 
but as co-primary drivers of climate variability, particularly under accelerated global 
heating. 

 

Figure 1: Solar radiation and gravity change inputs into Earth’s energy mass balance volatility 



 

Methodology 
We employed a high-resolution, seasonal and annual fractal analysis of: - Net radiative 
flux (TOA to surface) - Gravity anomalies (GRACE-based, mass redistribution) - 
Atmospheric variables: TQV (Total Quantified Vapor) and LWTUP (Longwave Upward 
Radiation) 

Fractal metrics including Lyapunov Exponent, DFA, and Hurst Exponent were computed 
at zonal (latitude band) and spatial (1x1 degree) scales for 2022 (partial) and prior 
years, with visual overlays of storm incidence from IBTrACS. 

The input data was NASA MERRA-2 solar radiation incoming and outgoing, NASA 
GRACE gravity delta data, and NOAA sea surface temperature data for the period 2015 
to 2025. The method was to ingest  the data and subset to standard weather cells, 
large-scale atmospheric circulation patterns that help distribute heat and moisture 
around the Earth.  Reading the hourly resolution data required a large computing 
capability (128 vCPUs, 1024 GiB of memory and 50 GiBps of bandwidth) provided by 
AWS with 500 GiB data storage, using xarray + Dask parallel array processing.  

Data Sources and Code Availability 

●​ NASA MERRA-2 Net Radiation (LWTUP, SWGNT) 
●​ GRACE RL06.3 Mascon Gravity Anomalies 
●​ IBTrACS Storm Track Data v04r01 
●​ Custom Python Fractal Analysis Toolkit (available upon request) 

Weather Cells 
 
Analysis was conducted at the resolution of one degree latitude by one degree 
longitude, except where aggregation was made by latitude bands in accordance with 
meteorological weather cells:  
        (28, 32): "Hadley–Ferrel North", 
        (58, 62): "Ferrel–Polar North", 
        (-32, -28): "Hadley–Ferrel South", 
        (-62, -58): "Ferrel–Polar South", 
        (-90, -63): "Polar South", 
        (-62, -33): "Ferrel South", 
        (-27, -1): "Equator–Hadley South", 
        (0, 27): "Equator–Hadley North", 
        (33, 57): "Ferrel North", 
        (63, 90): "Polar North" 

Code, data animations, and additional visualizations available upon request or 
upcoming publication repository. 



 

Key Findings 
Gravity Volatility​
Gravity instability follows strong seasonal cycles and is most volatile in Greenland and 
West Antarctica, supporting the hypothesis that ice mass loss is causing stress 
redistribution. Maximum stress zones align with known sub-crustal activity regions and 
may be precursors to seismic or atmospheric disturbances. 

Radiation Volatility​
Solar radiation volatility is highest in expected latitudinal bands and displays seasonal 
peaks. Crucially, year-on-year radiation volatility is increasing. Notably, heat drift from 
the Australian landmass across the Southern Indian and Southern Atlantic oceans is 
forming a repeatable pattern, potentially related to Southern Hemisphere 
ocean-atmosphere interactions and AMOC changes. 

Weather Variable Volatility​
Preliminary analysis of Total Quantified Vapor (TQV) and Longwave Upward Radiation 
(LWTUP) reveals a clear and recurring pattern in the days preceding storm formation. 
Compared to baseline seasonal weather behavior, storm-linked profiles exhibit marked 
divergence: TQV consistently rises, while LWTUP declines. This contrapuntal 
shift—indicative of increasing atmospheric moisture paired with a suppression of 
surface radiative release—is consistent with known thermodynamic storm precursors 
such as latent heat buildup and reduced outgoing radiation. The distinction between 
storm and non-storm profiles is sufficiently pronounced to suggest the presence of a 
coherent early warning signal embedded in the atmospheric energy balance. 

 



 

 

Fig 2; Storm Weather (top)  vs Mean Weekly  Parameters (bottom) Water Vapour and Long 
Wave Radiation Divergence 

 

Storm Clustering 
​
Storm clustering varied year to year, but 2022 emerges as a watershed year with 
significantly elevated storm activity across all major basins. Spatial shifts suggest 
correlation with ENSO-AMOC coupling and possibly delayed effects of 
radiative-gravitational forcing. Investigation using AI and ML modelling techniques can 
throw further light on clustering.  

North Atlantic Storms 
The North Atlantic hurricanes from 2022 - 2025 were subjected to closer investigation of 
atmospheric variable and solar radiation and weather fractal volatility metrics. ​
 

 Implications and Future Directions 
This study offers preliminary but compelling evidence that Earth system volatility is 
increasing in line with cumulative radiative and gravitational perturbations. The 
emerging patterns in radiation, gravity, and storm genesis suggest that these 
interactions may soon reach bifurcation thresholds. Future work could include: 



 

●​ Full-year fractal analysis for TQV and LWTUP​
 

●​ Model lead-lag dynamics between radiation and storm onset - test phase 
lead-lag relationships between radiation volatility and atmospheric instability 

 
●​ Develop AI classifiers from fractal-storm signatures 

 

 

Findings and Recommendations.  
We propose that climate instability may best be understood through the interacting 
fractal dynamics of energy and mass. Gravity and radiation, both temporally and 
spatially volatile, appear to precondition the atmosphere for extreme weather. These 
findings demand urgent attention as they point to systemic drivers of volatility that are 
accelerating and interconnected. 

It is clear that divergence between precipitable water vapour and upwelling longwave 
radiation is a reliable signal for storm prediction. Initial investigation indicates that a 14 
day lead time does reveal this activity for major storms in the iBTracs dataset.   

We also found that fractal metrics of net radiative flux detrended for day/night rotation 
with high Lyapunov volatility, when considered with Detrended Fluctuation Analysis low 
volatility,  increased the reliability of the prediction.  A reverse effect, decreased 
Lyapunov volatility coupled with increased Detrended Fluctuation Analysis also 
increased the reliability of storm prediction. This appears to be a feature of the solar 
radiation profile, the difference between radiation at the top of the atmosphere and 
radiation at ground level. This measured difference is caused by topographical 
(mountains and landmasses) and weather variability (clouds, atmospheric and 
hydrospheric currents, ice albedo effects etc).  

The study also found fractal indicators of an impending climate tipping point late 2024 in 
the Equator Hadley North weather cell, as part of the study’s detailed North Atlantic 
hurricane season daily radiation and water vapour fractal variability.   

We observed an anomalous Detrended Fluctuation Analysis (DFA) sharp spike in late 
24 in both radiation and water vapour fractal profiles. This could indicate a sudden 
change or anomaly in the underlying signal, such as a transient event or noise. Or it  
may suggest the presence of unusual factors at play, such as climate change tipping 
point behaviour. It is possible that this anomaly indicates that a new ‘attractor pattern’ 
for weather events has come into play.  



 

 

Figure 2: Anomalous spikes in Radiation (top) and Water Vapour (bottom) DFA in late 2024 
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Terminology 

 
 

Term Clarification 

Net radiative flux Net radiative flux in this context refers to SWTNT - LWTUP calculated at an 
hourly resolution by lat lon boundary as defined in NASA MERRA2. It is 
used as a proxy for global heating subset by geographic boundaries related 
to the AMOC and the ENSO respectively.  

NASA MERRA-2 
Data 

The Modern-Era Retrospective analysis for Research and Applications, 
Version 2 (MERRA-2) provides data beginning in 1980. It was introduced to 
replace the original MERRA dataset because of the advances made in the 
assimilation system that enable assimilation of modern hyperspectral 
radiance and microwave observations, along with GPS-Radio Occultation 
datasets. 

AMOC The Atlantic meridional overturning circulation (AMOC) is the main 
ocean current system in the Atlantic Ocean. It is a component of Earth's 
ocean circulation system and plays an important role in the climate system. 
The AMOC includes Atlantic currents at the surface and at great depths that 
are driven by changes in weather, temperature and salinity.  

NAO The North Atlantic Oscillation (NAO) index is based on the surface 
sea-level pressure difference between the Subtropical (Azores) High and the 
Subpolar Low. The positive phase of the NAO reflects below-normal heights 
and pressure across the high latitudes of the North Atlantic and 
above-normal heights and pressure over the central North Atlantic, the 
eastern United States and western Europe. The negative phase reflects an 
opposite pattern of height and pressure anomalies over these regions. 

Lyapunov 
Exponent 

The Lyapunov Exponent is used to measure the degree of contraction or 
divergence with different initial conditions over time according to the 
exponential law, and the ratio of convergence or divergence of trajectories.  
It is an indicator of deterministic chaos.  Values < 0 means it is a converged 
dynamical system to a stable fixed point. = 0 means it is a limit cycle, the 
dynamical system is stable. If > 0 means it is an unstable dynamical system 
with chaotic behaviour. (The Lyapunov Exponent quantifies and verifies  the 
sensitive dependency to initial conditions and the stability of equilibrium in 
dynamical systems by analysing the non-linear divergence or convergence 
of trajectories. Phase space dimensions indicate the possible states.)   

Fractal Analysis Fractal analysis is a mathematical approach used to study complex, 
self-similar patterns that are often found in natural systems. In the context of 
climate science, fractal analysis can be applied to detect early warning 
signals of approaching tipping points. As a system nears a tipping point, its 
behavior may exhibit characteristic changes, such as increased variability 
and autocorrelation, which are indicative of critical transitions. Fractal 
analysis helps in identifying these patterns by examining the scaling 
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properties and temporal correlations within climate data. 
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Figure 3: Highest Gravity Delta Volatility (Lyapunov Exponent) 

Investigation of increasing gravitational instability with atmospheric variables 
(Precipitable Water Vapour, Surface Pressure, Temperature, Sea Surface and Air 
TemperatureLatitude Bands to Analyze, in relation with increasing radiation instability. 
Preliminary data analysis revealed the following areas of interest.  

●​ Northern Hemisphere (gravity volatile): 

○​ 33°–57°N 

○​ 58°–62°N 

●​ Southern Hemisphere (radiation volatile, but gravity may reveal structure): 

○​ -1° to -27° 

○​ -28° to -32°​
 

Goals: 

1.​ Locate longitudes of maximum gravity volatility (Lyapunov, DFA, Hurst or 
standard deviation depending on metric availability). 

2.​ Map them to known landmasses, ice sheets, tectonic zones, or subduction 
boundaries. 



 

3.​ Assess whether gravity peaks cluster over: 

○​ Greenland, Canadian Shield, Siberian permafrost (north) 

○​ Antarctic Peninsula, Patagonian Andes, Wilkes Land (south) 

○​ Mid-Atlantic Ridge, Ring of Fire (volcanic/mantle dynamics)​
 

Rationale Behind Priority: 

●​ Gravity change volatility likely traces solid Earth dynamics → changes in 
lithosphere, ice melt, subterranean activity. 

●​ Radiation volatility is diffusive and atmospheric → a smooth, globally spread 
signal. 

●​ Considering both these volatility measures  may help distinguish origin vs. 
propagation of instability, which is why both are included in this study.  

 

Figure 4: DFA Exponent Analysis Highest Volatility Locations Gravity and Radiation 

Detrended Fluctuation Analysis (DFA), which captures long-term memory within time 
series, revealed a surprising overlap: the zones of highest volatility in both gravity and 
radiation occur at the same geographic coordinates. This coincidence warrants further 
exploration, particularly in seasonal context. 



 

Correlation analysis of the most volatile longitudes within 33–57°N and 58–62°N may 
establish behavioural relationships between: 

●​ Gravity volatility (Lyapunov, DFA, Hurst) 

●​ Radiation volatility (standard deviation over years, seasonal average for JJA) 

●​ Precipitable Water Vapour volatility (STD and Lyapunov)​
 

Longitudes of greatest interest: 

●​ Greenland / Canadian Shield / Siberian permafrost zones​
 

●​ AMOC source zone (around 60°N, 40°W)​
 

●​ Other notable melt or tectonic areas 

Key Implications 

●​ Gravity fractals may act as precursors to large-scale structural shifts relevant to 
storm formation. 

●​ Overlap with radiation fractals suggests possible energy–mass coupling worthy 
of future modeling. 

●​ Fractal zones around 60°N could be early-warning regions for AMOC disruption 
or severe melt events. 

●​ Further investigation is warranted to ascertain relationship with solar radiation 

Appendix B: Radiation Bifurcation Patterns 
This appendix outlines how fractal volatility in net radiation, derived from 10 years of 
NASA data, reveals structured, seasonally shifting zones where weather appears to 
originate. These high-volatility regions align closely with known storm generation zones 
and tipping point geographies such as the AMOC, West Antarctica, and monsoon 
basins. 

It summarizes the steps undertaken to identify in detail the coordinates of greatest 
volatility, where weather is most likely being 'made'. The major objective was to 
establish where physical systems are changing state in some kind of phase transition. 
Fractal Analysis with Lyapunov, Hurst and Detrended Fluctuation Analysis (DFA) was 
undertaken, providing a view from 10 years of data. The initial focus was on identifying 
the locations of greatest volatility, for further investigation.  

As the patterns of highest volatility converged with weather generation zones by 
season, the investigation proceeded to examine the relationships between radiation 



 

volatility and weather variables, such as water vapour, pressure and temperature, on a 
geolocation basis.  

Seasonal animation plots of global radiation highest volatility zones show a clear pattern 
of convergence by season.  The patterns seem well aligned with atmospheric and 
hydrospheric flux, thus likely  coherence with storm generation. 

Animation Seasonal Plots: Radiation Volatility by Season provided a clear view 

 

 

Figure 5:Highest Radiation Fractal Volatility Zones 2015 - 2025 

To separate surface energy effects from deep Earth influences, radiation signals were 
normalized against gravity delta data to identify landmass-driven volatility signatures. 

The study also shows clear relationships between  net radiative flux and radiation 
normalized with gravity, with a surprising result that land mass affects volatility. This is 
particularly clear for the latitude bands, corresponding to weather cells, for both 
Greenland and West Antarctica.   

https://trac-car.com/Weather.htm


 

 

Figure 6: Weather Cell Latitude Band by Geography plots: Net radiation gravity modified 
volatility. 

 

Goal Clarification 
 

The major objective of radiation fractal analysis is to answer the question "Where is the 
Earth’s weather being made?" 

http://weather.htm
http://weather.htm


 

The aim of radiation fractal analysis is to detect phase transition zones—areas where 
the climate system may be shifting state, which may act as physical precursors to 
extreme weather, analogous to state transitions in dynamical systems, including: 

●​ Coastal boundaries, ice–ocean interfaces, and ocean currents​
 

●​ Hadley–Ferrel cell boundaries and Arctic amplification latitudes​
 

●​ Seasonal transition points (e.g., JJA surface heat vs DJF ocean convection)​
 

These shifts are driven by nonlinear dynamics and may act as precursors to storms, 
tipping points, or long-range weather reorganization. 

To detect these phase transitions, precursors to climate tipping points, fractal analysis 
makes sense, as it specifically measures chaotic transitions to new states.  

Fractal Metric Insight It Gives 

Lyapunov Sensitivity to initial conditions — chaos 

Hurst Memory in the system, persistence vs noise 

DFA Power-law variability; long-term structural volatility 

Figure 7: Fractal Significance 

In order to compensate for the day/night cycle (increasing radiation in daylight hours) 
hourly radiation metrics were diurnally detrended across 24 hours for each 
latitude/longitude pair.  

Implementation Note 
1.​ Defined a geofence for each (lat, lon) unit or group of cells. 

2.​ Loaded multiple daily .nc files from NASA (over a ten year period, 2015 - 2025). 

3.​ Detrended net flux time series over days for each (latitude, longitude). 

4.​ Computed fractal volatility metrics on those time series.​
 



 

Key Implications 

●​ Radiation fractals appear to be  precursors to atmospheric and hydrospheric 
shifts relevant to storm formation. 

●​ Correlations between radiation volatility and weather changes seem highly 
connected in view of the highest heating volatility zones over regions that are  
implicated in driving hurricane, cyclone and monsoon generation circulations.  

●​ Fractal zones around 60°N could be early-warning regions for AMOC disruption 
or severe melt events. 

●​ West Antarctic instability shows a clear connection between net radiative flux 
seasonal effects and the intensity of radiation and gravity instability.  

 

Appendix C : Weather Anomalies and SPI 
 

To investigate early atmospheric signals of storm formation, this study combined 
multiple datasets from space-based Earth observation platforms. Atmospheric 
variables—including precipitable water vapour (TQV) and longwave upwelling radiation 
at the top of the atmosphere (LWTUP)—were sourced from NASA’s reanalysis datasets. 
Sea surface temperatures (SSTs) were incorporated from NOAA sources. All weather 
parameters were transformed using Z-score normalization (mean = 0, standard 
deviation = 1), enabling comparability and enhancing the visual clarity of volatility and 
anomaly detection. 

Storm data were retrieved from the NOAA International Best Track Archive for Climate 
Stewardship (IBTrACS). For this initial analysis, the North Atlantic basin—a critical 
formation zone for Atlantic hurricanes—was selected as a prototype region. 

Each storm record was merged with the normalized weather dataset by date and spatial 
bin. A lead_days value (from 0 to 14) was calculated to capture weather conditions in 
the days leading up to each storm. This structure enabled a temporal comparison 
between pre-storm atmospheric behavior and baseline weather conditions for the same 
region and period. 

Key Observations 

Analysis revealed a consistent temporal pattern prior to storm genesis: 

●​ A convergence followed by a divergence between the TQV index and LWTUP 
index appeared across nearly all storms in the IBTrACS storm dataset.​
 



 

●​ This pattern—characterized by rising TQV (indicating moisture accumulation) 
and falling LWTUP (indicating suppressed radiative release)—was absent in the 
background climatological signal for the same region and dates.​
 

These results strongly suggest that storm-specific thermodynamic precursors exist in 
the data, with distinct behavior that deviates measurably from the seasonal norm. 

Storm Propensity Index (SPI) 

To quantify this pre-storm anomaly, a Storm Propensity Index (SPI) was defined using 
the following criteria: 

●​ For each spatial bin and date, if:​
 

○​ TQV index (4 days later) ≥ +3.0, and​
 

○​ LWTUP index (4 days later) ≤ –3.0,​
 

●​ Then, SPI is triggered:​
 SPI=0.5×(∣TQVlead∣+∣LWTUPlead∣)\{SPI} = 0.5 \times (|\{TQV}_\{lead}| + 
|\{LWTUP}_\{lead}|) 

●​ Otherwise, SPI = 0.​
 

This metric aims to detect simultaneous excess moisture and energy trapping, which 
are hypothesized to precede convective instability and storm genesis. 

Validation Results 
 

SPI Signal Statistics Across the Global Weather Dataset 

To contextualize the strength of the Storm Propensity Index (SPI) as a predictive signal, 
we evaluated its performance across the entire global weather dataset. See Appendix G 
for detail by storm.  

Total Storms in IBTrACS Sample 320 

Storms with SPI Trigger (SPS > 0) 318 



 

Coverage (%) 99.38% 

Figure 8: SPI Early Warning Signal Statistics 

Applied to a sample dataset of over 209 million spatial–temporal weather records: 

●​ SPI triggered 32,842 times, representing only 0.016% of all data points. with a 
very low false-positive rate (~0.03%).​
 

●​ 319 distinct storm events were identified in which the SPI triggered within the 
14-day window between storm start and storm date, Total number of storms in 
the iBTracs dataset was 322.  

●​ Despite the rarity of the SPI events,  the mean SPI value among triggered events 
was high at 3.60, with a maximum of 6.29, indicating that when the index 
activates, it reflects significant atmospheric anomalies. Notably, SPI activations 
occurred on 862 unique dates across 11,417 distinct lat/lon cells, yet were 
disproportionately concentrated near actual storm events—highlighting SPI’s 
potential as a high-precision signal rather than random noise. 

 

This indicates that the SPI algorithm detects pre-storm conditions at a rate significantly 
greater than chance, providing compelling preliminary evidence of a physical signal 
embedded in atmospheric energy flux and water vapor buildup. 

Appendix D: Lyapunov Thresholds for Storm Genesis 

As part of our storm volatility analysis, we examined fractal behavior in radiation and 
atmospheric variables in the lead-up to Hurricane Ian, one of the most intense events in 
our North Atlantic dataset. A key insight emerged: 

Radiation Lyapunov volatility was elevated. Weather Lyapunov volatility was 
suppressed. 

This divergent signal is not only intriguing—it may be diagnostic of storm genesis. 

What Is the Lyapunov Exponent? 

The Lyapunov exponent is a measure from chaos theory. It tells us how quickly two 
nearly identical weather states diverge. A high Lyapunov value means small 
disturbances can grow quickly—chaos is amplifying. A low or negative value means the 
system is holding its shape—resisting change. 



 

Radiation: A System On Edge 

In the week before Ian, we observed: 

●​ Radiation Lyapunov was high and increasing​
 → This means the energy exchange between Earth and space (inferred from 
radiation imbalance) was becoming more chaotic and sensitive to small shifts.​
 

 Weather: A Calm Before the Storm 

At the same time: 

●​ Atmospheric Lyapunov was negative and flat​
 → The air was holding still. Winds, temperature, and moisture variability were 
suppressed—as if the system was waiting, storing energy without release.​
 

What This Likely Means Physically 

This divergence paints a compelling picture: 

●​ Radiation is destabilizing (energy is trying to move)​
 

●​ Atmosphere is repressed (transport systems are not yet active)​
 

When the atmosphere finally lets go, it does so all at once—triggering a storm. 

Why This Matters 

Unlike trend-based methods like DFA, Lyapunov exponents reveal tipping behavior: how 
close we are to a transition. This makes them powerful tools in early-warning systems. 

We propose that: 

A Lyapunov divergence signature—high radiation volatility alongside low 
atmospheric volatility—may be a new predictor of storm formation. 

This finding adds a fractal-based physical layer to the Storm Propensity Score (SPS) we 
introduced earlier. In a future analysis, we’ll explore how consistent this signal is across 
all major storms in our dataset. 



 

Appendix E: Fractal Divergence Signals 

Recent analysis of fractal volatility metrics—computed at high spatial and temporal 
resolution (1° grid, weekly cadence)—has revealed a compelling storm precursor 
signature: Lyapunov divergence between radiation and weather systems. 

📈 Observational Summary 

●​ Radiation Lyapunov exponents rise in the lead-up to storm formation, particularly 
in weeks preceding named storms like Hurricane Ian.​
 

●​ Simultaneously, weather Lyapunov values decline, suggesting a dynamical 
suppression or atmospheric rigidity in the same regions.​
 

●​ DFA metrics remain mostly stable but occasionally spike. When synchronized 
across both radiation and weather, these spikes may indicate abrupt regime 
shifts or global anomalies.​
 

Interpretation 

This opposing Lyapunov behavior likely reflects a pre-tipping state: 

●​ The radiative system becomes increasingly chaotic—absorbing and redistributing 
energy unevenly.​
 

●​ Meanwhile, the atmosphere resists adaptation, bottling up potential instability 
until it's released in storm form.​
 

This divergence can be framed as a tension gradient: the Earth system accumulates 
energy (high radiation Lyapunov), while the atmospheric response is muted (low 
weather Lyapunov). The eventual breach of this asymmetry appears to be a precursor 
to tropical storm genesis.  

Implications for Forecasting 

We propose that Lyapunov divergence—measured across the same lat-lon bins—be 
formally incorporated into the Storm Propensity Score (SPS). This addition would 
enhance predictive capability beyond SPI alone, introducing a physical, mathematically 
rooted indicator of pending dynamical imbalance. 

 



 

Statistics Date Latitude Longitude Weather 
DFA 

Weather 
Lyapunov 

Radiation 
DFA 

Radiation 
Lyapunov 

Storm 
Propensity 
Index (SPI) 

count 438144        

mean 2023-07-24 13.50 -37.50 1.65 -1.36 0.91 3.21 0.22 

min 2022-01-03 0.00 -85.00 1.02 -3.58 0.73 2.53 0.00 

25% 2022-10-10 6.75 -61.25 1.57 -1.60 0.83 3.11 0.00 

50% 2023-07-24 13.50 -37.50 1.66 -1.32 0.92 3.22 0.12 

75% 2024-05-06 20.25 -13.75 1.74 -1.08 0.98 3.31 0.34 

max 2025-02-24 27.00 10.00 2.25 0.14 1.51 3.74 2.73 

STD  8.08 27.71 0.12 0.41 0.09 0.15 0.29 

Figure 9:  Radiation and Weather Fractals Statistics Across all latitude/longitudes and dates 

When actual storms data is merged with weekly fractal metrics at a resolution of one degree 
Latitude by one degree of Longitude, particularly solar radiation has a clear effect on a sliding 
scale precalculated Storm Propensity Index.  

●​ Radiation Lyapunov (yellow) and DFA (red) show a more curved, nonlinear relationship 
with SPI, supporting the hypothesis that radiation fractals may encode storm risk.​
 

●​ Weather Lyapunov (blue) seems to have a flatter, less predictive profile—until a sharp 
change at the tail, possibly suggesting a threshold effect.​
 

●​ Weather DFA (green) shows a more consistent upward curve, indicating increasing SPI 
risk with higher DFA values.​
 

This aligns with  earlier findings: 



 

 

Figure 10: Radiation and Weather Fractals with Storm Propensity Index as target  

●​ Radiation Lyapunov (yellow) and DFA (red) show a more curved, nonlinear 
relationship with SPI, supporting the hypothesis that radiation fractals may 
encode storm risk.​
 

●​ Weather Lyapunov (blue) seems to have a flatter, less predictive profile—until a 
sharp change at the tail, possibly suggesting a threshold effect.​
 

●​ Weather DFA (green) shows a more consistent upward curve, indicating 
increasing SPI risk with higher DFA values.​
Radiation: SPI is associated with high Lyapunov and low DFA (divergent yet 
stable pattern).​
 

●​ Weather: SPI links to low Lyapunov and high DFA (more volatile, less directional 
movement). 

 

Storm 
Propensity 
Index 
Decile 

Weather Lyapunov Weather DFA Radiation Lyapunov Radiation DFA 

 Mean STD Mean STD Mean STD Mean STD 



 

0 -1.131 0.282 1.666 0.090 3.128 0.099 0.944 0.018 

1 -0.963 0.109 1.495 0.171 3.149 0.057 0.959 0.016 

2 -0.956 0.366 1.596 0.029 3.215 0.091 0.988 0.033 

3 -1.033 0.210 1.704 0.056 3.084 0.140 0.955 0.020 

4 -1.114 0.026 1.747 0.124 3.146 0.039 0.958 0.053 

5 -0.992 0.178 1.656 0.122 3.163 0.056 0.965 0.046 

6 -0.903 0.222 1.586 0.166 3.102 0.038 0.946 0.017 

7 -1.072 0.300 1.664 0.203 3.218 0.082 0.986 0.050 

8 -1.088 0.197 1.570 0.019 3.224 0.068 1.004 0.009 

9 -1.033 0.290 1.542 0.170 3.204 0.106 0.982 0.041 

 

Figure 11: Fractal statistics by SPI decile across all latitude/longitude 1 degree resolution 

 

Figure 12: Changes in volatility in radiation and weather fractals 

Where Lyapunov metrics show volatility greater than zero , over the longer term this 
results in chaos tipping points.   

In detrended fluctuation analysis (DFA), positive values of the scaling exponent (α) 
indicate a self-similar process with memory, while negative values suggest 
anti-correlated behavior, which suggests external forcing.   

Note the elevated solar radiation lyapunov exponent values, indicating both volatility 
and increasing instability over time.  



 

 

Appendix F: Polynomial Regression Validations 

Polynomial regression models the relationship between an independent variable and a 
dependent variable as a 4th-degree polynomial. The analysis conducted was to test the 
calculated Storm Propensity Index, which was observed to be a good precursor with a 
lead time of between 14 days and storm date for a major storm with the divergence in 
precipitable water vapour and longwave outgoing radiation divergence. The fit was 
reasonably good.   

 

Figure 13: Radiation Lyapunov to TQV and LWTUP (upon which the SPI is based)  

When the data was filtered by observed fractal patterns, and that is radiation lyapunov 
exponent > mean and detrended fluctuation analysis (dfa) < mean, the r squared score 
improved. The score also improved when filtered by weather lyapunov exponent < 
mean and dfa > mean.   

These conditions appear to correspond to the physical relationship between increasing 
levels of water vapour, and the energy that amasses pre storm.  

 



 

Key Insights: 

●​ Baseline R² (~0.54) from predicting SPI using only TQV_index and 
LWTUP_index reflects their strong foundational role (as expected from how SPI 
is constructed).​
 

●​ Improved R² (~0.70) under filtered conditions (high Lyapunov + low DFA) 
indicates that storm precursor signal strength increases under specific radiation 
volatility regimes.​
 

●​ Radiation fractals (especially Lyapunov > mean, DFA < mean) appear to define a 
window of atmospheric sensitivity, likely tied to instabilities in radiative equilibrium 
— a plausible physical mechanism for storm triggering.​
 

 Interpretation: 

This supports the findings of this study: 

That radiation fractal volatility modulates the reliability and impact of 
TQV/LWTUP divergence as a storm predictor. 

This did not appear to be overfitting — a 4th-degree polynomial is within reason for 
nonlinear meteorological patterns, especially in exploratory work. The fact that R² jumps 
only within these filtered conditions implies a non-uniform response surface, which: 

●​ Strengthens  the argument for fractal coupling, and​
 

●​ Justifies a next step of zone-wise or regime-based modeling (e.g. clustering or 
conditional models).​
 

 

Appendix G: SPI Trigger Table by Storm 

 

Storm Name 
14 Day Lead 
Date Date Storm Region 

No of Days Storm 
Precursor Triggered over 
!4 Days Prior to Storm 

ADRIAN 2023-06-13 2023-06-27 East Pacific 12 

AERE 2022-06-15 2022-06-29 West Pacific 7 



 

AGATHA 2022-05-13 2022-05-27 North Atlantic (FL) 6 

ALBERTO 2024-06-03 2024-06-17 North Atlantic (FL) 9 

ALETTA 2024-06-19 2024-07-03 East Pacific 7 

ALEX 2022-05-19 2022-06-02 North Atlantic (FL) 8 

ALFRED 2025-02-07 2025-02-21 South Pacific 13 

ALVARO 2023-12-18 2024-01-01 South Indian Ocean 10 

AMPIL 2024-07-28 2024-08-11 West Pacific 12 

ANA 2022-01-06 2022-01-20 South Indian Ocean 14 

ANCHA 2024-09-17 2024-10-01 South Indian Ocean 11 

ANGGREK 2023-12-29 2024-01-12 South Indian Ocean 12 

ANIKA 2022-02-09 2022-02-23 South Pacific 12 

ARLENE 2023-05-17 2023-05-31 North Atlantic (FL) 11 

ASANI 2022-04-21 2022-05-05 North Indian Ocean 11 

ASHLEY 2022-09-11 2022-09-25 South Indian Ocean 13 

ASNA 2024-08-16 2024-08-30 North Indian Ocean 12 

BALITA 2022-09-19 2022-10-03 South Indian Ocean 13 

BANYAN 2022-10-14 2022-10-28 West Pacific 10 

BARIJAT 2024-09-20 2024-10-04 West Pacific 12 

BATSIRAI 2022-01-10 2022-01-24 South Indian Ocean 15 

BEATRIZ 2023-06-15 2023-06-29 North Atlantic (FL) 13 

BEBINCA 2024-08-26 2024-09-09 West Pacific 9 

BELAL 2023-12-29 2024-01-12 South Indian Ocean 12 

BERYL 2024-06-14 2024-06-28 Far East Atlantic 9 

BHEKI 2024-10-31 2024-11-14 South Indian Ocean 13 



 

BIANCA 2025-02-05 2025-02-19 South Pacific 13 

BILLY 2022-02-26 2022-03-12 South Indian Ocean 10 

BIPARJOY 2023-05-22 2023-06-05 North Indian Ocean 12 

BLAS 2022-05-31 2022-06-14 East Pacific 12 

BOLAVEN 2023-09-22 2023-10-06 West Pacific 9 

BONNIE 2022-06-13 2022-06-27 Far East Atlantic 9 

BRET 2023-06-05 2023-06-19 Far East Atlantic 7 

BUD 2024-07-10 2024-07-24 East Pacific 7 

CALVIN 2023-06-26 2023-07-10 North Atlantic (FL) 14 

CANDICE 2024-01-11 2024-01-25 South Indian Ocean 12 

CARLOTTA 2024-07-17 2024-07-31 East Pacific 11 

CELIA 2022-06-02 2022-06-16 North Atlantic (FL) 12 

CHABA 2022-06-14 2022-06-28 West Pacific 8 

CHARLOTTE 2022-03-03 2022-03-17 South Pacific 8 

CHENESO 2022-12-30 2023-01-13 South Indian Ocean 10 

CHIDO 2024-11-25 2024-12-09 South Indian Ocean 15 

CHRIS 2024-06-16 2024-06-30 North Atlantic (FL) 7 

CIMARON 2024-09-09 2024-09-23 West Pacific 12 

CINDY 2023-06-08 2023-06-22 Far East Atlantic 9 

CLIFF 2022-01-19 2022-02-02 South Indian Ocean 11 

CODY 2021-12-24 2022-01-07 
Western South 
Pacific 7 

COLIN 2022-06-17 2022-07-01 North Atlantic (FL) 7 

COURTNEY 2025-03-08 2025-03-22 South Pacific 13 



 

DAMREY 2023-08-07 2023-08-21 West Pacific 15 

DANA 2024-10-09 2024-10-23 North Indian Ocean 10 

DANIEL 2024-07-20 2024-08-03 East Pacific 11 

DANIELLE 2022-08-17 2022-08-31 Mid-Atlantic Drift 13 

DARBY 2022-06-25 2022-07-09 East Pacific 6 

DARIAN 2022-11-28 2022-12-12 South Indian Ocean 10 

DEBBY 2024-07-19 2024-08-02 North Atlantic (FL) 12 

DIANNE 2025-03-12 2025-03-26 South Pacific 13 

DIKELEDI 2024-12-26 2025-01-09 South Indian Ocean 10 

DINGANI 2023-01-17 2023-01-31 South Indian Ocean 13 

DJOUNGOU 2024-02-01 2024-02-15 South Indian Ocean 11 

DOKSURI 2023-07-06 2023-07-20 West Pacific 12 

DON 2023-06-27 2023-07-11 Mid-Atlantic Drift 14 

DORA 2023-07-17 2023-07-31 East Pacific 11 

DOVI 2022-01-24 2022-02-07 
Western South 
Pacific 11 

DUMAKO 2022-01-28 2022-02-11 South Indian Ocean 11 

EARL 2022-08-19 2022-09-02 Far East Atlantic 11 

ELEANOR 2024-02-05 2024-02-19 South Indian Ocean 11 

ELLIE 2022-12-07 2022-12-21 South Pacific 11 

ELVIS 2025-01-15 2025-01-29 South Indian Ocean 12 

EMILIA 2024-07-21 2024-08-04 East Pacific 11 

EMILY 2023-08-04 2023-08-18 Far East Atlantic 13 

EMNATI 2022-01-22 2022-02-05 South Indian Ocean 11 



 

ENALA 2023-02-04 2023-02-18 South Indian Ocean 12 

ERNESTO 2024-07-28 2024-08-11 Far East Atlantic 12 

ERROL 2025-03-26 2025-04-09 South Pacific 12 

ESTELLE 2022-07-01 2022-07-15 North Atlantic (FL) 9 

EUGENE 2023-07-21 2023-08-04 East Pacific 11 

EVA 2022-02-12 2022-02-26 
Western South 
Pacific 13 

EWINIAR 2024-05-09 2024-05-23 West Pacific 12 

FABIEN 2023-04-28 2023-05-12 South Indian Ocean 14 

FABIO 2024-07-22 2024-08-05 East Pacific 12 

FAIDA 2025-01-14 2025-01-28 South Indian Ocean 12 

FENGAL 2024-11-15 2024-11-29 North Indian Ocean 15 

FERNANDA 2023-07-29 2023-08-12 East Pacific 13 

FEZILE 2022-02-01 2022-02-15 South Indian Ocean 13 

FILI 2022-03-20 2022-04-03 
Western South 
Pacific 13 

FILIPO 2024-02-25 2024-03-10 South Pacific 12 

FIONA 2022-08-31 2022-09-14 Far East Atlantic 12 

FRANCINE 2024-08-25 2024-09-08 North Atlantic (FL) 9 

FRANK 2022-07-11 2022-07-25 North Atlantic (FL) 8 

FRANKLIN 2023-08-05 2023-08-19 North Atlantic (FL) 14 

FREDDY 2023-01-21 2023-02-04 South Pacific 13 

GABRIELLE 2023-01-22 2023-02-05 
Western South 
Pacific 12 

GAEMI 2024-07-05 2024-07-19 West Pacific 9 



 

GAMANE 2024-03-12 2024-03-26 South Indian Ocean 13 

GARANCE 2025-02-11 2025-02-25 South Indian Ocean 13 

GASTON 2022-09-05 2022-09-19 Mid-Atlantic Drift 13 

GEORGETTE 2022-07-13 2022-07-27 East Pacific 8 

GERT 2023-08-05 2023-08-19 Far East Atlantic 14 

GILMA 2024-08-04 2024-08-18 East Pacific 12 

GINA 2022-05-02 2022-05-16 
Western South 
Pacific 11 

GOMBE 2022-02-20 2022-03-06 South Indian Ocean 13 

GORDON 2024-08-28 2024-09-11 Far East Atlantic 8 

GREG 2023-07-31 2023-08-14 East Pacific 13 

GUCHOL 2023-05-21 2023-06-04 West Pacific 13 

HAIKUI 2023-08-13 2023-08-27 West Pacific 12 

HAITANG 2022-09-27 2022-10-11 West Pacific 10 

HAITANG 2022-09-30 2022-10-14 West Pacific 12 

HALE 2022-12-21 2023-01-04 South Pacific 9 

HALIMA 2022-03-06 2022-03-20 South Indian Ocean 9 

HAMOON 2023-10-06 2023-10-20 North Indian Ocean 9 

HAROLD 2023-08-07 2023-08-21 North Atlantic (FL) 15 

HECTOR 2024-08-08 2024-08-22 East Pacific 13 

HELENE 2024-09-09 2024-09-23 North Atlantic (FL) 12 

HERMAN 2023-03-13 2023-03-27 South Indian Ocean 10 

HERMINE 2022-09-09 2022-09-23 Far East Atlantic 13 

HIDAYA 2024-04-17 2024-05-01 South Indian Ocean 10 



 

HILARY 2023-08-02 2023-08-16 East Pacific 13 

HINNAMNOR 2022-08-13 2022-08-27 West Pacific 13 

HONDE 2025-02-11 2025-02-25 South Pacific 13 

HONE 2024-08-05 2024-08-19 East Pacific 13 

HOWARD 2022-07-23 2022-08-06 East Pacific 13 

IALY 2024-05-02 2024-05-16 South Indian Ocean 8 

IAN 2022-09-08 2022-09-22 North Atlantic (FL) 13 

IDALIA 2023-08-12 2023-08-26 North Atlantic (FL) 13 

ILEANA 2024-08-28 2024-09-11 East Pacific 8 

ILSA 2023-03-22 2023-04-05 South Pacific 12 

IRENE 2023-01-01 2023-01-15 Australian Cyclones 9 

IRWIN 2023-08-12 2023-08-26 East Pacific 13 

ISAAC 2024-09-10 2024-09-24 Mid-Atlantic Drift 12 

ISSA 2022-03-29 2022-04-12 Unclassified 14 

IVETTE 2022-07-29 2022-08-12 East Pacific 9 

IVONE 2025-02-22 2025-03-08 South Indian Ocean 13 

JASMINE 2022-04-06 2022-04-20 South Indian Ocean 15 

JASPER 2023-11-18 2023-12-02 
Western South 
Pacific 10 

JAVIER 2022-08-17 2022-08-31 East Pacific 13 

JEBI 2024-09-11 2024-09-25 West Pacific 12 

JELAWAT 2023-11-30 2023-12-14 Western North Pacific 9 

JOHN 2024-09-08 2024-09-22 North Atlantic (FL) 11 

JONGDARI 2024-08-04 2024-08-18 West Pacific 12 



 

JOSE 2023-08-15 2023-08-29 Mid-Atlantic Drift 12 

JOVA 2023-08-21 2023-09-04 East Pacific 11 

JOYCE 2024-09-13 2024-09-27 Far East Atlantic 12 

JUDE 2025-02-22 2025-03-08 South Indian Ocean 13 

JUDY 2023-02-10 2023-02-24 
Western South 
Pacific 15 

JULIA 2022-09-22 2022-10-06 North Atlantic (FL) 12 

KARIM 2022-04-21 2022-05-05 South Indian Ocean 11 

KARL 2022-09-27 2022-10-11 North Atlantic (FL) 10 

KATIA 2023-08-16 2023-08-30 Far East Atlantic 12 

KAY 2022-08-21 2022-09-04 East Pacific 12 

KENNETH 2023-09-04 2023-09-18 East Pacific 12 

KEVIN 2023-02-13 2023-02-27 South Pacific 15 

KHANUN 2023-07-12 2023-07-26 West Pacific 10 

KIRK 2024-09-15 2024-09-29 Far East Atlantic 12 

KIROGI 2023-08-15 2023-08-29 West Pacific 12 

KIRRILY 2024-01-03 2024-01-17 Australian Cyclones 12 

KOINU 2023-09-13 2023-09-27 West Pacific 11 

KONG-REY 2024-10-10 2024-10-24 West Pacific 11 

KRATHON 2024-09-12 2024-09-26 West Pacific 13 

KRISTY 2024-10-07 2024-10-21 North Atlantic (FL) 9 

KULAP 2022-09-11 2022-09-25 West Pacific 13 

LAN 2023-07-23 2023-08-06 West Pacific 10 

LANE 2024-10-18 2024-11-01 East Pacific 8 



 

LEE 2023-08-22 2023-09-05 Far East Atlantic 11 

LEEPI 2024-08-18 2024-09-01 West Pacific 12 

LESLIE 2024-09-17 2024-10-01 Far East Atlantic 11 

LESTER 2022-09-01 2022-09-15 North Atlantic (FL) 11 

LIDIA 2023-09-19 2023-10-03 East Pacific 11 

LINCOLN 2024-01-31 2024-02-14 South Pacific 11 

LISA 2022-10-16 2022-10-30 North Atlantic (FL) 9 

LOLA 2023-10-05 2023-10-19 
Western South 
Pacific 8 

MA-ON 2022-08-06 2022-08-20 West Pacific 10 

MADELINE 2022-08-28 2022-09-11 East Pacific 13 

MAL 2023-10-29 2023-11-12 
Western South 
Pacific 12 

MALAKAS 2022-03-23 2022-04-06 Western North Pacific 13 

MALIKSI 2024-05-16 2024-05-30 West Pacific 13 

MAN-YI 2024-10-24 2024-11-07 Western North Pacific 11 

MANDOUS 2022-11-20 2022-12-04 North Indian Ocean 10 

MARGOT 2023-08-24 2023-09-07 Far East Atlantic 11 

MARIA 2024-07-22 2024-08-05 West Pacific 12 

MARTIN 2022-10-16 2022-10-30 North Atlantic (FL) 9 

MAWAR 2023-05-04 2023-05-18 West Pacific 15 

MAX 2023-09-24 2023-10-08 North Atlantic (FL) 8 

MEARI 2022-07-25 2022-08-08 West Pacific 11 

MEGAN 2024-02-28 2024-03-13 South Pacific 13 

MEGI 2022-03-25 2022-04-08 West Pacific 14 



 

MERBOK 2022-08-27 2022-09-10 West Pacific 13 

MICHAUNG 2023-11-16 2023-11-30 North Indian Ocean 9 

MIDHILI 2023-10-30 2023-11-13 North Indian Ocean 13 

MILTON 2024-09-20 2024-10-04 North Atlantic (FL) 12 

MOCHA 2023-04-24 2023-05-08 North Indian Ocean 10 

MUIFA 2022-08-20 2022-09-03 West Pacific 11 

MULAN 2022-07-25 2022-08-08 West Pacific 11 

NADINE 2024-10-04 2024-10-18 North Atlantic (FL) 9 

NALGAE 2022-10-12 2022-10-26 West Pacific 12 

NANMADOL 2022-08-28 2022-09-11 West Pacific 13 

NAT 2024-01-22 2024-02-05 
Western South 
Pacific 9 

NESAT 2022-09-28 2022-10-12 West Pacific 11 

NEVILLE 2024-02-22 2024-03-07 South Indian Ocean 9 

NEWTON 2022-09-07 2022-09-21 East Pacific 13 

NICOLE 2022-10-23 2022-11-06 North Atlantic (FL) 4 

NIGEL 2023-09-01 2023-09-15 Far East Atlantic 11 

NORMA 2023-10-03 2023-10-17 East Pacific 7 

NORU 2022-09-07 2022-09-21 West Pacific 13 

OLGA 2024-03-21 2024-04-04 South Pacific 12 

OPHELIA 2023-09-07 2023-09-21 North Atlantic (FL) 12 

ORLENE 2022-09-14 2022-09-28 East Pacific 11 

OSAI 2024-01-23 2024-02-06 
Western South 
Pacific 9 

OSCAR 2024-10-05 2024-10-19 North Atlantic (FL) 9 



 

OTIS 2023-10-07 2023-10-21 North Atlantic (FL) 8 

PABUK 2024-12-07 2024-12-21 West Pacific 9 

PAINE 2022-09-19 2022-10-03 East Pacific 13 

PAKHAR 2022-11-24 2022-12-08 West Pacific 12 

PATTY 2024-10-17 2024-10-31 Mid-Atlantic Drift 8 

PAUL 2024-03-26 2024-04-09 Australian Cyclones 11 

PHILIPPE 2023-09-09 2023-09-23 Far East Atlantic 12 

PILAR 2023-10-14 2023-10-28 North Atlantic (FL) 12 

PITA 2024-12-28 2025-01-11 
Western South 
Pacific 10 

PRAPIROON 2024-07-05 2024-07-19 West Pacific 9 

PULASAN 2024-09-01 2024-09-15 West Pacific 10 

RAE 2025-02-08 2025-02-22 
Western South 
Pacific 13 

RAFAEL 2024-10-20 2024-11-03 North Atlantic (FL) 9 

RAMON 2023-11-07 2023-11-21 East Pacific 10 

REMAL 2024-05-11 2024-05-25 North Indian Ocean 13 

RINA 2023-09-14 2023-09-28 Far East Atlantic 11 

ROBYN 2024-11-09 2024-11-23 South Indian Ocean 14 

ROKE 2022-09-12 2022-09-26 West Pacific 13 

ROSLYN 2022-10-06 2022-10-20 East Pacific 12 

SANBA 2023-10-01 2023-10-15 West Pacific 7 

SANVU 2023-04-04 2023-04-18 Western North Pacific 10 

SAOLA 2023-08-08 2023-08-22 West Pacific 15 

SARA 2024-10-30 2024-11-13 North Atlantic (FL) 12 



 

SEAN 2023-09-26 2023-10-10 Far East Atlantic 9 

SEAN 2025-01-03 2025-01-17 South Pacific 13 

SERU 2025-02-10 2025-02-24 
Western South 
Pacific 13 

SHANSHAN 2024-08-06 2024-08-20 West Pacific 13 

SITRANG 2022-10-07 2022-10-21 North Indian Ocean 13 

SON-TINH 2024-07-27 2024-08-10 West Pacific 12 

SONCA 2022-09-28 2022-10-12 West Pacific 11 

SONGDA 2022-07-12 2022-07-26 West Pacific 8 

SOULIK 2024-09-01 2024-09-15 West Pacific 10 

TALAS 2022-09-05 2022-09-19 West Pacific 13 

TALIAH 2025-01-17 2025-01-31 South Pacific 12 

TALIM 2023-06-29 2023-07-13 West Pacific 14 

TAM 2025-03-31 2025-04-14 
Western South 
Pacific 15 

TAMMY 2023-10-04 2023-10-18 Far East Atlantic 7 

TEJ 2023-10-05 2023-10-19 North Indian Ocean 8 

TIFFANY 2021-12-25 2022-01-08 South Pacific 8 

TOKAGE 2022-08-07 2022-08-21 West Pacific 10 

TORAJI 2024-10-25 2024-11-08 West Pacific 11 

TRAMI 2024-10-04 2024-10-18 West Pacific 9 

TRASES 2022-07-15 2022-07-29 West Pacific 10 

UNNAMED1 2023-07-06 2023-07-20 East Pacific 12 

UNNAMED10 2022-07-26 2022-08-09 North Indian Ocean 11 

UNNAMED11 2022-07-28 2022-08-11 North Indian Ocean 9 



 

UNNAMED12 2022-07-31 2022-08-14 North Indian Ocean 9 

UNNAMED13 2022-08-03 2022-08-17 North Indian Ocean 10 

UNNAMED14 2022-08-28 2022-09-11 North Indian Ocean 13 

UNNAMED15 2022-11-06 2022-11-20 North Indian Ocean 10 

UNNAMED16 2022-11-28 2022-12-12 North Indian Ocean 10 

UNNAMED17 2022-12-08 2022-12-22 North Indian Ocean 11 

UNNAMED18 2023-01-16 2023-01-30 North Indian Ocean 12 

UNNAMED19 2023-05-25 2023-06-08 North Indian Ocean 10 

UNNAMED2 2023-09-01 2023-09-15 East Pacific 11 

UNNAMED20 2023-07-16 2023-07-30 North Indian Ocean 11 

UNNAMED21 2023-09-16 2023-09-30 North Indian Ocean 12 

UNNAMED22 2022-02-09 2022-02-23 South Indian Ocean 12 

UNNAMED23 2022-02-13 2022-02-27 South Indian Ocean 13 

UNNAMED24 2022-03-16 2022-03-30 South Indian Ocean 12 

UNNAMED25 2022-04-09 2022-04-23 South Indian Ocean 15 

UNNAMED26 2022-04-11 2022-04-25 South Indian Ocean 15 

UNNAMED27 2022-07-13 2022-07-27 South Indian Ocean 8 

UNNAMED28 2022-10-18 2022-11-01 South Indian Ocean 7 

UNNAMED29 2023-02-08 2023-02-22 South Pacific 15 

UNNAMED3 2023-09-09 2023-09-23 East Pacific 12 

UNNAMED30 2024-01-17 2024-01-31 South Indian Ocean 10 

UNNAMED31 2024-05-05 2024-05-19 South Indian Ocean 11 

UNNAMED32 2024-12-10 2024-12-24 South Indian Ocean 7 

UNNAMED33 2024-12-25 2025-01-08 South Indian Ocean 10 



 

UNNAMED34 2025-03-03 2025-03-17 South Indian Ocean 13 

UNNAMED35 2022-01-15 2022-01-29 South Pacific 14 

UNNAMED36 2023-01-05 2023-01-19 Australian Cyclones 11 

UNNAMED37 2024-01-17 2024-01-31 Australian Cyclones 10 

UNNAMED38 2024-02-01 2024-02-15 
Western South 
Pacific 11 

UNNAMED39 2024-12-15 2024-12-29 
Western South 
Pacific 9 

UNNAMED4 2024-09-16 2024-09-30 North Atlantic (FL) 12 

UNNAMED40 2025-01-19 2025-02-02 
Western South 
Pacific 12 

UNNAMED41 2025-01-28 2025-02-11 
Western South 
Pacific 14 

UNNAMED42 2025-04-02 2025-04-16 South Pacific 14 

UNNAMED44 2022-03-15 2022-03-29 West Pacific 13 

UNNAMED45 2022-07-20 2022-08-03 West Pacific 12 

UNNAMED46 2022-08-15 2022-08-29 West Pacific 13 

UNNAMED47 2022-09-30 2022-10-14 West Pacific 12 

UNNAMED48 2022-10-05 2022-10-19 West Pacific 12 

UNNAMED49 2023-03-28 2023-04-11 West Pacific 11 

UNNAMED5 2024-10-19 2024-11-02 East Pacific 9 

UNNAMED50 2023-09-09 2023-09-23 West Pacific 12 

UNNAMED51 2023-10-26 2023-11-09 West Pacific 12 

UNNAMED52 2024-06-29 2024-07-13 West Pacific 7 

UNNAMED53 2024-09-06 2024-09-20 West Pacific 9 

UNNAMED54 2022-08-05 2022-08-19 North Atlantic (FL) 11 



 

UNNAMED55 2022-09-12 2022-09-26 Far East Atlantic 13 

UNNAMED56 2022-09-20 2022-10-04 Far East Atlantic 13 

UNNAMED57 2023-01-01 2023-01-15 Unclassified 9 

UNNAMED58 2023-10-09 2023-10-23 North Atlantic (FL) 10 

UNNAMED59 2023-11-02 2023-11-16 North Atlantic (FL) 13 

UNNAMED6 2022-02-17 2022-03-03 North Indian Ocean 14 

UNNAMED60 2024-09-01 2024-09-15 North Atlantic (FL) 10 

UNNAMED7 2022-03-06 2022-03-20 North Indian Ocean 9 

UNNAMED8 2022-05-06 2022-05-20 North Indian Ocean 9 

UNNAMED9 2022-07-02 2022-07-16 North Indian Ocean 8 

USAGI 2024-10-26 2024-11-09 West Pacific 12 

VERNON 2022-02-09 2022-02-23 South Indian Ocean 12 

VINCE 2025-01-17 2025-01-31 South Indian Ocean 12 

WUKONG 2024-07-28 2024-08-11 West Pacific 12 

YAGI 2024-08-17 2024-08-31 West Pacific 12 

YAMANEKO 2022-10-28 2022-11-11 Western North Pacific 6 

YINXING 2024-10-19 2024-11-02 West Pacific 9 

YUN-YEUNG 2023-08-21 2023-09-04 West Pacific 11 

ZELIA 2025-01-25 2025-02-08 South Pacific 14 
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